Prepared by:

DAMES & MOORE, INC. 5 Industrial Way Salem, New Hampshire 03079

Prepared for:

Amerco Real Estate 2721 North Central Avenue Suite 700 Phoenix, Arizona 85004

April 29, 1996 PN: 22946-023-211:S15278

DRAFT
SUBSURFACE INVESTIGATION REPORT
U-Haul Center # 79063
270 South Main Street
Rutland, Vermont

TABLE OF CONTENTS

Sec	tion		Page					
1.0	INTRODUCT	ION	1					
2.0	SITE DESCR	IPTION AND HISTORY	2					
3.0 SUBSURFACE INVESTIGATION								
4.0 SENSITIVE RECEPTOR SURVEY								
5.0	CONCLUSIO	NS AND RECOMMENDATIONS	. 7					
6.0	LIMITATION	S	. 8					
		Figures						
FIG	URE 1	SITE LOCATION MAP						
FIGI	URE 2	SITE PLAN						
		Appendices						
APP	ENDIX A	BORING AND WELL CONSTRUCTION LOGS						
APP	ENDIX B	GROUND WATER ANALYTICAL REPORT						

SUBSURFACE INVESTIGATION REPORT U-HAUL CENTER #79063 270 SOUTH MAIN STREET RUTLAND, VERMONT

1.0 INTRODUCTION

This report presents the results of a Subsurface Investigation performed at the above-referenced property by Dames & Moore for Amerco Real Estate during the period of March 26, 1996 through April 29, 1996. The services performed included the installation of three overburden groundwater monitoring wells, collection of soil and ground water samples, and the analyses of three ground water samples (one from each monitoring well) for volatile aromatic compounds (VOCs) and total petroleum hydrocarbons (TPH). In addition, a Sensitive Receptor Survey was conducted to evaluate the need for long-term monitoring and treatment. The work was performed in accordance with the Preliminary Work Plan dated June 29, 1995, which was prepared by Dames & Moore at the request of Amerco Real Estate and approved by the Vermont Department of Environmental Conservation (DEC) on July 5, 1995.

The Subsurface Investigation was conducted to evaluate the potential for oil and hazardous materials to exist on the property at levels likely to warrant mitigation pursuant to regulations of the State of Vermont. Based on the observed condition of the property during this investigation, visual observation of soil and ground water samples obtained during this investigation, the results of field headspace screening of soil samples for VOCs, and the laboratory analyses of ground water samples obtained during this investigation, it appears unlikely that oil or hazardous materials are present in soil or ground water on the property at levels that would warrant further remedial response actions. Based on the findings of this investigation, neither long-term monitoring nor treatment would appear to be warranted at the subject property.

April 29, 1996

PN: 27946-023-211:S15278

2.0 SITE DESCRIPTION AND HISTORY

The site is located at the northeast corner of the intersection of South Main Street and Cold River Road (See Figure 1). The abutting property to the north is occupied by a gasoline station, a clothing store and a car wash. A municipal/industrial equipment and supply store is located immediately to the east. A temporary personnel placement agency is located immediately to the south across Cold River Road. A used car and truck dealership, an auto parts store, a car dealership and a motel are located to the west across Main Street.

The topography in the general vicinity of the site slopes gently downward toward the west, and the nearest significant surface water body is Otter Creek, located approximately 4,500 feet to the west. Based on the local and regional topography, ground water flow in the vicinity of the site is expected to be to the west toward Otter Creek. Undeveloped land and wetlands are located between the car dealership to the west of the site and Otter Creek. Mussey Brook is located approximately 1,500 feet north of the site and discharges into Otter creek at a location approximately 5,000 feet northwest from the site. Municipal drinking water and sewer services are provided to the site and surrounding area. Municipal drinking water is obtained from the Rutland City Reservoir which is located in the northeast corner of the city.

On April 27, April 28 and May 1, 1995, Dames & Moore observed the closure of four underground storage tanks (USTs A,B,C, and D) at the subject site. The locations of the USTs are shown on Figure 2. The tanks were cleaned, excavated and transported off site for disposal, with the associated piping and pumps, by the MacIntyre Corporation of Middlebury, Vermont. Mr. Tim MacNamara of the VTDEC was on site on April 28 and May 1 to observe the condition of the USTs and the open excavations.

During the excavation of the tanks, Dames & Moore obtained soil and ground water samples for field screening for volatile organic compounds (VOCs) using a photoionization detector equipped with a 10.2 eV lamp and standard headspace

April 29, 1996

PN: 27946-023-211:S15278

screening techniques. The screening results and field observations indicated no evidence of petroleum releases associated Tanks A, B and C. However, approximately 25 cubic yards of petroleum-impacted soils were excavated when Tank D was removed. Five soil samples obtained around the perimeter of the excavation were submitted to a qualified laboratory for VOC analyses by EPA Method 8260 and total petroleum hydrocarbon (TPH) analyses by EPA Method 418.1, as specified by Mr. MacNamara. VOCs were not detected in the five samples. TPH was detected in two of the five samples at 150 parts per million (ppm) and 160 ppm. Additional documentation of the tank closures was presented in the Initial Report of Underground Storage Tank Closures, dated May 23, 1995, which was prepared by Dames & Moore and submitted to the VTDEC at the request of Amerco Real Estate.

April 29, 1996 PN: 27946-023-211:S15278

. E.

3.0 SUBSURFACE INVESTIGATION

Three soil borings (B-1, B-2 and B-3) were advanced at the subject property on March 29, 1996, using a truck-mounted drilling rig and hollow-stem augers. The borings were advanced to 13 feet below ground surface, and soil samples were obtained at selected depths by driving a split-spoon sampler ahead of the auger. Soil samples were placed in clean glass jars and were screened in the field for total volatile organic compounds (VOCs) using a photoionization detector (PID) and standard headspace screening techniques. VOCs were detected at 6.2 parts per million in the soil sample obtained from B-3 at a depth of 4 to 6 feet. VOCs were not detected in the other samples. The headspace screening results are shown on the boring logs in Appendix A. The boring locations are shown on Figure 2. In accordance with the Preliminary Work Plan and based on visual observations of the soil samples, auger cuttings, the headspace screening results and the ground water analytical data, as discussed below, soil samples were not submitted to the laboratory analyses.

On March 29, 1996, the three soil borings were completed as two-inch-diameter, PVC, flush-mounted, ground water monitoring wells (MW-1, MW-2, and MW-3). The well construction logs are presented in Appendix A. The wells were developed on March 29, 1996 by bailing minimum of three times the standing volume of water in each well, using dedicated PVC bailers. On April 1, 1996, the dedicated bailers were cleaned and used to purge a minimum of three times the standing volume of water prior to sampling. Ground water samples collected from each monitoring well using the dedicated bailer and were submitted to Alpha Analytical Labs (Westborough, Massachusetts) for benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) analyses by EPA Method 8020 and total petroleum hydrocarbon (TPH) analysis by EPA Method 8100 Modified. No BTEX, MTBE or petroleum hydrocarbons were detected in the samples obtained from wells MW-1, MW-2 or MW-3. The complete laboratory report is presented in Appendix B.

April 29, 1996 PN: 27946-023-211:S15278

- -

Prior to purging the wells on April 1, 1996, the elevation of the top of the PVC well casing was surveyed relative to a local datum and the depth to ground water was measured in each well relative to the top of the PVC casing. The elevations and depths to ground water are shown on the well construction logs in Appendix A. The elevation of the ground water in each well on April 1, 1996 is shown on Figure 2. The elevation data indicate that ground water at the site flows to the west, as initially anticipated based on the local and regional topography.

4.0 SENSITIVE RECEPTOR SURVEY

Dames & Moore (D&M) conducted a Sensitive Receptor Survey in accordance with the Preliminary Work Plan. Dames & Moore visited both the Town of Rutland and the City of Rutland municipal offices and confirmed that all downgradient properties are provided with city water and sewer services. D&M also inquired as to the existence of any private or public water supply wells in the area downgradient from the site. Both the City and Town of Rutland reported that there are no public water supply wells downgradient from the site, and that they have no records indicating the existence of private water supply wells in this area. Dames & Moore conducted interviews with employees at the Days Inn Motel and the Smith Buick/GMC auto dealership and determined these downgradient properties do not have basements and that there are no private water supply wells associated with these properties. Underground utilities and/or storm drains are located along Cold River Road and South Main Street; however, based on the soil and ground water analytical results, no adverse impacts to the utilities or storm drains are anticipated.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on (1) the excavation and removal of the USTs, (2) the excavation and removal of approximately 25 cubic yards of petroleum-impacted soil encountered during the closure of Tank D, (3) the soil and ground water analytical results obtained following the excavation of the tanks, (4) the soil and ground water analytical results obtained during the subsequent Subsurface Investigation, and (5) the findings of the Sensitive Receptor Survey, soil and ground water conditions at the site do not appear to pose a significant risk to health, welfare or the environment. As a result, no further remedial response actions appear to be warranted, and therefore, no further remedial response actions are recommended.

6.0 LIMITATIONS

This report is an instrument of service prepared by Dames & Moore for the exclusive use Amerco Real Estate. The purpose of the Subsurface Investigation was to determine whether soil and/or ground water conditions exist at the site at levels that would warrant further remedial response actions pursuant to the regulations of the State of Vermont. Use of the report for other purposes or by other parties is permitted without the express written permission of Dames & Moore. Opinions presented in this report are based upon information gathered during this investigation and from other activities described herein. In performing this investigation, Dames & Moore relied upon information provided by others. This information is presented as obtained; Dames & Moore cannot guarantee the accuracy of this information. The findings and opinions conveyed in this report do not constitute scientific certainties but rather probabilities based upon our professional judgment regarding the data gathered during this investigation. Dames & Moore cannot warrant or guarantee that not finding indicators of hazardous materials means that hazardous materials are not present at the site.

FIG. NO.

2

N:\27946\023\27946F2

14

APPENDIX A BORING AND MONITORING WELL LOGS

SOIL BORING LOG

			Project:	UHAUL	· · · · · · · · · · · · · · · · · · ·		Boring No:	:	<u>B-1</u>			
DAMES 8	k MOOI	RE, Inc.	ĺ				Sheet:	1 of 1				
			Location:	Rutland	<u>, Vermont</u>	Project Nu	mber:					
Delling Co.	Cuobine	. 0 Cana l	<u> </u>	Darlar I			Chkd, By		<u>PJK</u>			
Drilling Co.:	<u>Cusning</u>	j & Sons, ii	nc.		Location: e of Boring:		Southwest	<u>em cor</u>	ner of Bld.			
Eng/Geol.:	Kevan (Carpenter		Date St	arted: 3/29/9	96	Monitoring Well Date Completed: 3/29/26					
3	<u> </u>	SAMPLE			T	<u> </u>	Date Completed: 3/29/26					
Depth		Pen/Rec		Blows		IPLE DESCRIP	MOIT		Screening			
(ft)	NO.	(in)	(ft)	per 6 in					PPM			
0	S1	24/20	0-2	10		nalt surface M Sand with tra	: !!		115			
į		24/20	<u> </u>	8	Dry.	W Sanu With the	ice siii	f	ND			
		<u>† </u>	 	8	J 0.y.							
				8	1							
	\$2	24/18	2-4	4	Lt brown F-	M Sand with tra	ice clay,		ND			
		 		4		to F-Sand & Silt	t ·					
		ļ	 	3	Damp.							
5	S3	24/24	4-6	8	i + brown =	Sand & Silt, gra	daa ta		NIS.			
Ŭ	- 55	27/27		10	Silt and	Sanu a Siii, yra F-Sand	ides to		ND			
		 	<u> </u>	20		· Outio			·			
				12								
	\$4	24/24	6-8	12		ND						
		ļ		13	Wet							
		 	 	15								
			 									
		 										
10												
}		-										
												
						EOB @ 13	ft					
						202 0 ,0	···	<u> </u>				
			_				}	1				
							į	Ì				
15		<u> </u>						[
-		 										
}								ŀ				
		<u> </u>		-		,		ł				
į	···						İ	Ì				
[1	ľ				
							Ì					
}		 	·					-				
. 20							}					
	Granular	Soils		Cohesivo	e Soils							
Blows/ft		Density	Blows/ft	Con	sistency	Notes:						
0-2		V. Loose	<2	V.	Soft	Boring 1 wa	as converte	d to m	onitoring well			
4-10 10.20		Loose	2-4		Soft	MW-1.]			
10-30 30-50		M Dense Dense	4-8 8-15		. Stiff Stiff				j			
>50		V. Dense	15-30		Stiff							
- 00		T. 001100	>30		lard				Į.			
				`	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						

SOIL BORING LOG

Project: UHAUL Boring No: B-2 Sheet: 1_of1 Project Number: 29743-02 Chkd. By PJK	
Location: Rutland, Vermont	
Eng/Geol.: Kevan Carpenter Purpose of Boring: Monitoring Well Date Completed: 3/29/26 Depth SAMPLE DESCRIPTION Screer PPN	<u>3</u>
Depth (ft)	
SAMPLE	
Depth (ft)	
(ft) NO. (in) (ft) per 6 in PPM 0 8 Asphalt surface ND S1 24/13 0-2 7 Lt brown F-M Sand with some silt ND Dry. 15 Dry. ND ND S2 24/11 2-4 10 Lt brown F- Sand & Silts, ND Damp. 12 Lt brown F-Sand & Silt, ND 5 3 24/17 4-6 3 Lt brown F-Sand & Silt, ND	
0	
S1 24/13 0-2 7 Lt brown F-M Sand with some silt ND	
21 Dry. 15	
S2 24/11 2-4 10	
S2 24/11 2-4 10 Lt brown F- Sand & Silts, ND 5 5 0	
5 Damp. 5 S3 24/17 4-6 3 Lt brown F-Sand & Silt, ND Wet	
5 S3 24/17 4-6 3 Lt brown F-Sand & Silt, ND Wet	
5 S3 24/17 4-6 3 Lt brown F-Sand & Silt, ND Wet	
5 S3 24/17 4-6 3 Lt brown F-Sand & Silt, ND	
3 Wet	
6	
10	-
 	
EOB @ 13 ft.	
15	
<u> </u>	
	•
 	
20	
Granular Soils Cohesive Soils	
Blows/ft Density Blows/ft Consistency Notes:	
0-2 V. Loose <2 V. Soft Boring 1 was converted to monitoring v	rell
4-10 Loose 2-4 Soft MW-2. 10-30 M Dense 4-8 M. Stiff	
30-50 M Dense 4-8 M. Stiff	
>50 V. Dense 15-30 V. Stiff	
>30 Hard	

SOIL BORING LOG

	·····		Project:	ÜHAUI		<u>-</u>	Boring No		<u>B-3</u>				
DAMES 8	MOO	RE. Inc	1	2000			Sheet:	٠-	<u>p-3</u> <u>1 of 1</u>				
					, Vermont		Project Nu Chkd. By		29743-023 PJK				
Drilling Co.:	Cushing	2 & Sons, li	1C.	Boring (ocation:		West of fo						
Eng/Geol.:	Kevan (Carpenter		Purpose Date St	e of Boring: arted: 3/29/9	96	Monitoring Date Com	<u>Well</u>	3/20/26				
	SAMPLE					···	Date COM	pieteu.	3/29/26 Field				
Depth	-	Pen/Rec		Blows	SAN	APLE DESCRIP	TION		Screening				
(ft)	NO.	(in)	(ft)	per 6 in					PPM				
0	S1	24/15	0-2	4	Asp	halt surface	-11						
ļ	5	24/15	0-2	3	some g	M Sand & silt w	/ith		ND				
		 -		6	Dry.	iavei							
				5	1								
]	S2	24/0	2-4	5	Roc	k in Spoon Hea	d						
,		 		3 5									
			 	3									
5	S3	24/3	4-6	5		Sand & Silt,			6.2				
[3	Wet	•							
		ļ		8									
] .					
		 		<u> </u>									
}													
10													
ļ .			· <u> </u>										
 	····												
ŀ													
						EOB @ 13	ft.						
· .								l					
}								[
15													
[-	·							į					
-													
}								!					
F								}					
			<u> </u>	•				ŀ					
-							•						
20													
	Granular	Soils		Cohesive	Soils								
Blows/ft		Density	Blows/ft	Con	sistency	Notes:							
0-2		V. Loose	<2	V.	Soft	Boring 1 wa	as converte	d to m	onitoring well				
4-10 10-30		Loose M Dense	2-4 4-8		Soft Stiff	MW-3.							
30-50		Dense	4-6 8-15		Stiff				j				
>50		V. Dense	15-30	٧.	Stiff								
			>30	H	ard								

WELL COMPLETION LOG

WELL COMPLETION LOG

WELL COMPLETION LOG

APPENDIX B GROUND WATER ANALYTICAL REPORT

ALPHA ANALYTICAL LABORATORIES

Right Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

| APR | 2 1996

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006 RI A65

CERTIFICATE OF ANALYSIS

Client: Dames & Moore Env. Consultants

Laboratory Job Number: L9602010

Address: 5 Industrial Way

Invoice Number: 82224

Salem, NH 03079

Date Received: 03-APR-96

Attn: Kevin Carpenter

Date Reported: 10-APR-96

Project Number: 27946-023

Delivery Method: Alpha

Site: UHAUL / South Main St.

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L9602010-01	MW-1	Rutland, VT
L9602010-02	MW-2	Rutland, VT
L9602010-03	MW-3	Rutland, VT

Authorized by:

Scott McLean - Laboratory Director

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006 RI A65

Laboratory Sample Number: L9602010-01

Date Collected: 01-APR-96

Sample Matrix:

WATER

Date Received: 03-APR-96 Date Reported : 10-APR-96

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 2 Vial, 2 Amber Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAT	res	ID
		_				PREP	ANALYSIS	
Aromatic Volatile Organics	g. 22.5%	8.080 (8020	· · · · ·	04-Apr	SF
Benzene	ND	ug/l	1.0					
Toluene	NTD	ug/l	1.0					
Ethylbenzene	ND	ug/1	1.0					
Xylenes	ND	ug/l	1.0					
1,2-Dichlorobenzene	ND	ug/l	1.0					
1,3-Dichlorobenzene	ND	ug/l	1.0					
1,4-Dichlorobenzene	ND	ug/l	1.0					
Chlorobenzene	ND	ug/l	1.0					
Methyl tert butyl ether	ND	ug/l	1.0					
Hydrocarbon Scan GC 8100 Modi	fied			~~ 1	8100M	03-Ap	r 05-Apr	DB
Mineral Spirits	ND	mg/1	1.0					
Gasoline	ND	mg/l	1.0					
Fuel Oil #2/Diesel	NID ·	mg/l	1.0					
Fuel Oil #4	ND	mg/l	1.0					
Fuel Oil #6	ND	mg/l	1.0					
Motor Oil	ND	mg/l	1.0					
Kerosene	ИD	mg/l	1.0					
SURROGATE RECOVERY								
o-Terphenyl	102.	*						

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006 RI A65

Laboratory Sample Number: L9602010-02

MW-2

Date Collected: 01-APR-96 Date Received: 03-APR-96

Sample Matrix:

WATER

Date Reported : 10-APR-96

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 2 Vial, 2 Amber Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES I PREP ANALYSIS	ΣĎ
Aromatic Volatile Organics			v - 1000 kas	: ° 1	8020	04-Apr s	- F
Benzene	ND	ug/l	1.0				
Toluene	ND	ug/1	1.0				
Ethylbenzene	ND	ug/l	1.0				
Xylenes	ND	ug/l	1.0				
1,2-Dichlorobenzene	ND	ug/l	1.0				
1,3-Dichlorobenzene	ND	ug/l	1.0				
1,4-Dichlorobenzene	ND	ug/1	1.0				
Chlorobenzene	ND	ug/l	1.0				
Methyl tert butyl ether	ND	ug/l	1.0				
Hydrocarbon Scan GC 8100 Mo	dified			9(1	8100M	03-Apr 05-Apr D	В
Mineral Spirits	ND	mg/l	1.0				
Gasoline	ND	mg/l	1.0				
Fuel Oil #2/Diesel	ND	mg/l	1.0				
Fuel Oil #4	ND	mg/l	1.0				
Fuel Oil #6	ND	mg/1	1.0				
Motor Oil	ND	mg/l	1.0				
Kerosene	ND	mg/l	1.0				
SURROGATE RECOVERY							
o-Terphenyl	100.	ŧ					

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA 086 NH 198958-A CT PH-0574 NY 11148 NC 320 SC 88006 RI A65

Laboratory Sample Number: L9602010-03

MW-3

Date Collected: 01-APR-96 Date Received: 03-APR-96

Sample Matrix:

WATER

Date Reported: 10-APR-96

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 2 Vial, 2 Amber Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID
Aromatic Volatile Organics			ngh.	1	8020	05-Apr	SF
Benzene	ND	ug/l	1.0				
Toluene	ND	ug/l	1.0				
Ethylbenzene	ND	ug/l	1.0				
Xylenes	ND	ug/l	1.0				
1,2-Dichlorobenzene	ND	ug/l	1.0				
1,3-Dichlorobenzene	ND	ug/l	1.0				
1,4-Dichlorobenzene	ND	ug/l	1.0				-
Chlorobenzene	ND	ug/l	1.0				
Methyl tert butyl ether	ND	ug/1	1.0				
Hydrocarbon Scan GC 8100 Modi	fied	e de la companya de l		1	8100M	03-Apr 05-Apr	DB
Mineral Spirits	ND	mg/l	1.0				
Gasoline	ND	mg/l	1.0				
Fuel Oil #2/Diesel	ND ·	mg/l	1.0				
Fuel Oil #4	ND	mg/l	1.0				
Fuel Oil #6	ND	mg/l	1.0				
Motor Oil	ND	mg/l	1.0				
Kerosene	ND	mg/l	1.0				
SURROGATE RECOVERY							
o-Terphenyl	103.	*					

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L9602010

Parameter	MS %	MSD %	RPD	
Volatile Organics Spike	Recovery by GC	MS/MSD fo	r sample(s)	01-03
1,1-Dichloroethene	92	82	11	
Trichloroethene	93	88	6	
Chlorobenzene	88	89	1	
Benzene	86	86	Ō	
Foluene	84	85	1	
Ethylbenzene	87		-	

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

 Test Methóds for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. 1986.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

CHAIN-OF-CUSTODY RECORD

PURCHASE ORI)EB 110	PROJEC	T NAM	E/ NO.	UHA	UL P	TU La He	127946	- 623	8			7	7	7	7	7	777	2004100
		LOCATIO	N (2:3	⋴ ≲.	مدلكر	Mein	57.		_ V # / _	18	ي ا	<u>Ž</u> É	/ /	′ /	′ /	/ /	/ /	/ / / R	ORWARD ESULTS TO:
SAMPLERS: _	Heuch C NAME) Ker	apon	λ		LAB	ORATO	RY: Al	da	·	CONTAINERS	3	¥/.		र्स	/				on Congenter d
	SIGNATURE)	m le	aml		1			X MA		P Ω	₹00°	/&		/ /	/		/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Knotti &
SAMPLE	SIGNATURE)	Г	Τ	 *				717		Š.	/	•						Domes	3 Moore
IDENTIFICATION	DATE	TIME	СОМР	GRAB	SOIL	WATER	SAMPLE LOCATION			Ž	/ ≟	\$ 2	7	/ ,	/	/	/	RE	MARKS:
Mw-1	प्रावि	10!20	ļ	X	<u> </u>	X	Monte	oring h	<u>ell</u>	4	X	X							
		ļ	<u> </u>					· •											
Mw-2	4/1/46	10:4c		X	<u> </u>	1/2	 	11		4	X	1							
mw-3	4/1/96	litar)	-					11		 		_			<u>-</u> -	_		 	
1 .00	11.772	1,7.00	 	_~		 			·	半	<u> </u>	-		ᅱ				 	<u> </u>
							····	····		\vdash				ㅓ		-		 	
													\neg	_			_		· · · · · · · · · · · · · · · · · · ·
	_								···					_					
								***	·	ļ				4				ļ <u> </u>	
,								·		 				4				<u> </u>	
		···.					<u> </u>			-				+				 	
RELINQUISHED) BY: (Corport		COMP		Ma	ore.	DAJE 3	RECEIVED BY:	(MA	20	2/ mg	FJ) Çe	00	Į,	CO	MPAN	NY:	DATE:
RELINQUISHED BY:	STENATURE)	01/2°		COMP	ANY:			DATE: TIME:	RECEIVED 8Y:	(NA	一大	1	2	è	Q.	COI	MPAN	νY:	DATE /3 TIME /20